Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Embeddings for Generating Complex Descriptions of Concepts in Italian Language (2402.16632v1)

Published 26 Feb 2024 in cs.CL

Abstract: In this work, we propose a Distributional Semantic resource enriched with linguistic and lexical information extracted from electronic dictionaries, designed to address the challenge of bridging the gap between the continuous semantic values represented by distributional vectors and the discrete descriptions offered by general semantics theory. Recently, many researchers have concentrated on the nexus between embeddings and a comprehensive theory of semantics and meaning. This often involves decoding the representation of word meanings in Distributional Models into a set of discrete, manually constructed properties such as semantic primitives or features, using neural decoding techniques. Our approach introduces an alternative strategy grounded in linguistic data. We have developed a collection of domain-specific co-occurrence matrices, derived from two sources: a classification of Italian nouns categorized into 4 semantic traits and 20 concrete noun sub-categories, and a list of Italian verbs classified according to their semantic classes. In these matrices, the co-occurrence values for each word are calculated exclusively with a defined set of words pertinent to a particular lexical domain. The resource comprises 21 domain-specific matrices, one comprehensive matrix, and a Graphical User Interface. Our model facilitates the generation of reasoned semantic descriptions of concepts by selecting matrices directly associated with concrete conceptual knowledge, such as a matrix based on location nouns and the concept of animal habitats. We assessed the utility of the resource through two experiments, achieving promising outcomes in both: the automatic classification of animal nouns and the extraction of animal features.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. Tensorflow: A system for large-scale machine learning. In 12th {normal-{\{{USENIX}normal-}\}} symposium on operating systems design and implementation ({normal-{\{{OSDI}normal-}\}} 16), pp.  265–283. Anderson et al. [2017] Anderson, A.J., D. Kiela, S. Clark, and M. Poesio. 2017. Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns. Transactions of the Association for Computational Linguistics 5: 17–30 . Anderson et al. [2016] Anderson, A.J., B.D. Zinszer, and R.D. Raizada. 2016. Representational similarity encoding for fmri: Pattern-based synthesis to predict brain activity using stimulus-model-similarities. NeuroImage 128: 44–53 . Baroni et al. [2014] Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Anderson, A.J., D. Kiela, S. Clark, and M. Poesio. 2017. Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns. Transactions of the Association for Computational Linguistics 5: 17–30 . Anderson et al. [2016] Anderson, A.J., B.D. Zinszer, and R.D. Raizada. 2016. Representational similarity encoding for fmri: Pattern-based synthesis to predict brain activity using stimulus-model-similarities. NeuroImage 128: 44–53 . Baroni et al. [2014] Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Anderson, A.J., B.D. Zinszer, and R.D. Raizada. 2016. Representational similarity encoding for fmri: Pattern-based synthesis to predict brain activity using stimulus-model-similarities. NeuroImage 128: 44–53 . Baroni et al. [2014] Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  2. Visually grounded and textual semantic models differentially decode brain activity associated with concrete and abstract nouns. Transactions of the Association for Computational Linguistics 5: 17–30 . Anderson et al. [2016] Anderson, A.J., B.D. Zinszer, and R.D. Raizada. 2016. Representational similarity encoding for fmri: Pattern-based synthesis to predict brain activity using stimulus-model-similarities. NeuroImage 128: 44–53 . Baroni et al. [2014] Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Anderson, A.J., B.D. Zinszer, and R.D. Raizada. 2016. Representational similarity encoding for fmri: Pattern-based synthesis to predict brain activity using stimulus-model-similarities. NeuroImage 128: 44–53 . Baroni et al. [2014] Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  3. Representational similarity encoding for fmri: Pattern-based synthesis to predict brain activity using stimulus-model-similarities. NeuroImage 128: 44–53 . Baroni et al. [2014] Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Baroni, M., R. Bernardi, and R. Zamparelli. 2014. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  4. Frege in space: A program for compositional distributional semantics. Linguistic Issues in language technology 9(6): 5–110 . Baroni and Lenci [2010] Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Baroni, M. and A. Lenci. 2010. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  5. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics 36(4): 673–721 . Bastian et al. [2009] Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  6. Gephi: an open source software for exploring and manipulating networks. Icwsm 8(2009): 361–362 . Belletti and Rizzi [1988] Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Belletti, A. and L. Rizzi. 1988. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  7. Psych-verbs and θ𝜃\thetaitalic_θ-theory. Natural Language & Linguistic Theory 6: 291–352 . Binder et al. [2016] Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Binder, J.R., L.L. Conant, C.J. Humphries, L. Fernandino, S.B. Simons, M. Aguilar, and R.H. Desai. 2016. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  8. Toward a brain-based componential semantic representation. Cognitive neuropsychology 33(3-4): 130–174 . Blondel et al. [2008] Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Blondel, V.D., J.L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  9. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment 2008(10): P10008 . Boleda [2020] Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  10. Boleda, G. 2020. Distributional semantics and linguistic theory. Annual Review of Linguistics . Boleda and Erk [2015] Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Boleda, G. and K. Erk 2015. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  11. Distributional semantic features as semantic primitives—or not. In 2015 AAAI Spring Symposium Series. Burgess [1998] Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  12. Burgess, C. 1998. From simple associations to the building blocks of language: Modeling meaning in memory with the hal model. Behavior Research Methods, Instruments, & Computers 30(2): 188–198 . Chersoni et al. [2017] Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, P. Blache, and A. Lenci. 2017. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  13. Is structure necessary for modeling argument expectations in distributional semantics? arXiv preprint arXiv:1710.00998 . Chersoni et al. [2021] Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chersoni, E., E. Santus, C.R. Huang, and A. Lenci. 2021. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  14. Decoding word embeddings with brain-based semantic features. Computational Linguistics: 1–34 . Chomsky [1965] Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  15. Chomsky, N. 1965. Aspects of the theory of syntax. MIT Press. D’Agostino [1989] D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  16. D’Agostino, E. 1989. L’elaborazione di un lessico-grammatica. Salerno: ILUS . De Bueriis and Monteleone [1995] De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . De Bueriis, G. and M. Monteleone. 1995. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  17. Dizionario elettronico delas_i-delaf_i ver. 1.0. Derby et al. [2019] Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Derby, S., P. Miller, and B. Devereux. 2019. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  18. Feature2vec: Distributional semantic modelling of human property knowledge. arXiv preprint arXiv:1908.11439 . Devlin et al. [2018] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  19. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 . D’Agostino et al. [2004] D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . D’Agostino, E., A. Elia, and S. Vietri. 2004. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  20. Lexicon-grammar, electronic dictionaries and local grammars of italian. Lingvisticae Investigationes Supplementa 24: 125–136 . Elia [1984] Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  21. Elia, A. 1984. Le verbe italien. Shena editore, Fasano di Puglia (Italia) and (A.-G. Nizet, Paris (France. Elia [2013] Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  22. Elia, A. 2013. On lexical, semantic and syntactic granularity of italian verbs. Penser le Lexique Grammaire: Perspectives Actuelles, Honoré Champion, Paris: 277–286 . Elia [2014] Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  23. Elia, A. 2014. Operatori, argomenti e il sistema ”LEG-Semantic Role Labelling” dell’italiano. Pisa: ETS. Elia et al. [1981] Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Martinelli, and E. d’Agostino. 1981. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  24. Lessico e strutture sintattiche: introduzione alla sintassi del verbo italiano. Elia et al. [2011] Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A., M. Monteleone, and F. Marano. 2011. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  25. From the concept of transformation in harris and chomsky to the lexique-grammaire of maurice gross. History of linguistics: 76–82 . Elia and Vietri [2010] Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Elia, A. and S. Vietri. 2010. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  26. Lexis-grammar & semantic web. INFOtheca-Journal of Informatics & Librarianship 11(1) . Fagaraşan et al. [2015] Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Fagaraşan, L., E.M. Vecchi, and S. Clark 2015. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  27. From distributional semantics to feature norms: grounding semantic models in human perceptual data. In Proceedings of the 11th International Conference on Computational Semantics, pp.  52–57. Folli [2001] Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  28. Folli, R. 2001. Two strategies to construct telicity: A comparative analysis of english and italian. Working Papers, in Linguistics, Philology & Phonetics: 47 . Gardent et al. [2005] Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gardent, C., B. Guillaume, G. Perrier, and I. Falk 2005. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  29. Maurice gross’ grammar lexicon and natural language processing. In Language and Technology Conference. Grochocka [2008] Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  30. Grochocka, M. 2008. The usefulness of the definitions of abstract nouns in oald7 and node. Poznań Studies in Contemporary Linguistics 44(4): 469–501. doi:10.2478/v10010-008-0024-9 . Gross [1968] Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  31. Gross, M. 1968. Grammaire transformationnelle du français: syntaxe du verbe. París: Larousse,. Gross [1975] Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  32. Gross, M. 1975. Méthodes en syntaxe. Hermann, Paris. Gross [1981] Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  33. Gross, M. 1981. Les bases empiriques de la notion de prédicat sémantique. Langages (63): 7–52 . Harris [1954] Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  34. Harris, Z.S. 1954. Distributional structure. Word 10(2-3): 146–162 . Husić [2020] Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  35. Husić, H. 2020. A vagueness based analysis of abstract nouns. In Proceedings of Sinn und Bedeutung, Volume 24, pp.  359–376. Jurgens and Stevens [2010] Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Jurgens, D. and K. Stevens 2010. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  36. The s-space package: an open source package for word space models. In Proceedings of the ACL 2010 System Demonstrations, pp.  30–35. Khodak et al. [2018] Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khodak, M., N. Saunshi, Y. Liang, T. Ma, B. Stewart, and S. Arora. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  37. A la carte embedding: Cheap but effective induction of semantic feature vectors. arXiv preprint arXiv:1805.05388 . Khokhlova [2014] Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  38. Khokhlova, N. 2014. Understanding of abstract nouns in linguistic disciplines. Procedia-Social and Behavioral Sciences 136: 8–11 . Lambiotte et al. [2008] Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lambiotte, R., J.C. Delvenne, and M. Barahona. 2008. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  39. Laplacian dynamics and multiscale modular structure in networks. arXiv preprint arXiv:0812.1770 . Landauer and Dumais [1997] Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  40. Landauer, T.K. and S.T. Dumais. 1997. A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological review 104(2): 211 . Laporte [2005] Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  41. Laporte, E. 2005. In memoriam maurice gross. Archives of Control Sciences 15(3): 257–278 . Levin [1993] Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  42. Levin, B. 1993. English verb classes and alternations: A preliminary investigation. University of Chicago press. Lieto et al. [2017] Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lieto, A., D.P. Radicioni, and V. Rho. 2017. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  43. Dual peccs: a cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence 29(2): 433–452 . Lyding et al. [2014] Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Lyding, V., E. Stemle, C. Borghetti, M. Brunello, S. Castagnoli, F. Dell’Orletta, H. Dittmann, A. Lenci, and V. Pirrelli 2014. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  44. The paisa’corpus of italian web texts. In 9th Web as Corpus Workshop (WaC-9)@ EACL 2014, pp.  36–43. EACL (European chapter of the Association for Computational Linguistics). Maisto [2022] Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  45. Maisto, A. 2022. Extract similarities from syntactic contexts: a distributional semantic model based on syntactic distance. IJCoL. Italian Journal of Computational Linguistics 8(8-2) . Maisto and Balzano [2021] Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Maisto, A. and W. Balzano 2021. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  46. Building a pos tagger and lemmatizer for the italian language. In International Conference on Advanced Information Networking and Applications, pp.  62–71. Springer. McDonald and Brew [2004] McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McDonald, S. and C. Brew 2004. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  47. A distributional model of semantic context effects in lexical processing. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.  17. Association for Computational Linguistics. McRae et al. [2005] McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . McRae, K., G.S. Cree, M.S. Seidenberg, and C. McNorgan. 2005. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  48. Semantic feature production norms for a large set of living and nonliving things. Behavior research methods 37(4): 547–559 . Mikolov et al. [2013] Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  49. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 . Mikolov et al. [2013] Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mikolov, T., W.t. Yih, and G. Zweig 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  50. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies, pp.  746–751. Mitchell and Lapata [2008] Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata 2008. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  51. Vector-based models of semantic composition. In proceedings of ACL-08: HLT, pp.  236–244. Mitchell and Lapata [2010] Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Mitchell, J. and M. Lapata. 2010. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  52. Composition in distributional models of semantics. Cognitive science 34(8): 1388–1429 . Murphy et al. [2012] Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, B., P. Talukdar, and T. Mitchell 2012. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  53. Selecting corpus-semantic models for neurolinguistic decoding. In * SEM 2012: The First Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp.  114–123. Murphy [2002] Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  54. Murphy, G. 2002. The big book of concepts. MIT press. Nam [1995] Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  55. Nam, S. 1995. The semantics of locative prepositional phrases in English. University of California, Los Angeles. Padó and Lapata [2007] Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Padó, S. and M. Lapata. 2007. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  56. Dependency-based construction of semantic space models. Computational Linguistics 33(2): 161–199 . Pennington et al. [2014] Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pennington, J., R. Socher, and C.D. Manning 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  57. Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.  1532–1543. Pereira et al. [2018] Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Pereira, F., B. Lou, B. Pritchett, S. Ritter, S.J. Gershman, N. Kanwisher, M. Botvinick, and E. Fedorenko. 2018. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  58. Toward a universal decoder of linguistic meaning from brain activation. Nature communications 9(1): 963 . Rohde [2002] Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  59. Rohde, D.L. 2002. Methods for binary multidimensional scaling. Neural Computation 14(5): 1195–1232 . Rosch [1973] Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  60. Rosch, E.H. 1973. Natural categories. Cognitive psychology 4(3): 328–350 . Sahlgren [2008] Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  61. Sahlgren, M. 2008. The distributional hypothesis. Italian Journal of Disability Studies 20: 33–53 . Sahlgren et al. [2008] Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Sahlgren, M., A. Holst, and P. Kanerva 2008. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  62. Permutations as a means to encode order in word space. In The 30th Annual Meeting of the Cognitive Science Society (CogSci’08), 23-26 July 2008, Washington DC, USA. Silberztein [2016] Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  63. Silberztein, M. 2016. Formalizing natural languages: The NooJ approach. John Wiley & Sons. Turc et al. [2019] Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Turc, I., M.W. Chang, K. Lee, and K. Toutanova. 2019. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  64. Well-read students learn better: On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962 . Utsumi [2018] Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  65. Utsumi, A. 2018. A neurobiologically motivated analysis of distributional semantic models. arXiv preprint arXiv:1802.01830 . Vietri [1990] Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  66. Vietri, S. 1990. On some comparative frozen sentences in italian. Lingvisticae investigationes 14(1): 149–174 . Vietri [2004] Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  67. Vietri, S. 2004. Lessico-grammatica dell’italiano. Metodi, descrizioni e applicazioni. Utet, Torino. Vietri [2014] Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  68. Vietri, S. 2014. The italian module for nooj. The Italian module for NooJ: 389–393 . Vietri [2017] Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  69. Vietri, S. 2017. Usi verbali dell’italiano: le frasi anticausative. Carocci. Vietri [2019a] Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  70. Vietri, S. 2019a. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata 3: 567–595 . Vietri [2019b] Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  71. Vietri, S. 2019b. I verbi di maniera del movimento in italiano. Studi Italiani di Linguistica Teorica e Applicata XLVIII(3): 567–595 . Vietri [2020] Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  72. Vietri, S. 2020. The lexicon of transitive verbs of motion and the asymmetry between goal and source pps. International Journal of Linguistics 12(6): 81–115 . Zamparelli [2020] Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam . Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .
  73. Zamparelli, R. 2020. Countability shifts and abstract nouns. Mass and Count in Linguistics, Philosophy, and Cognitive Science. Benjamins, Amsterdam .

Summary

We haven't generated a summary for this paper yet.